字符级中文文本分类-CNN基于TensorFlow实现

05-07   0  4

基于CNN的文本分类问题已经有了一定的研究成果:


CNN做句子分类的论文: Convolutional Neural Networks for Sentence Classification。


以及字符级CNN的论文:Character-level Convolutional Networks for Text Classification。


如今,TensorFlow大版本已经升级到了1.3,对很多的网络层实现了更高层次的封装和实现,甚至还整合了如Keras这样优秀的一些高层次框架,使得其易用性大大提升。相比早起的底层代码,如今的实现更加简洁和优雅。


本章的目的是基于TensorFlow的API来重新实现一个在中文文本上的分类器。


数据集

本文采用了清华NLP组提供的THUCNews新闻文本分类数据集的一个子集(原始的数据集大约74万篇文档,训练起来需要花较长的时间)。数据集请自行到THUCTC:一个高效的中文文本分类工具包下载,请遵循数据提供方的开源协议。


本次训练使用了其中的10个分类,每个分类6500条,总共65000条新闻数据。


类别如下:

体育, 财经, 房产, 家居, 教育, 科技, 时尚, 时政, 游戏, 娱乐


数据集划分如下:

  • 训练集: 5000*10
  • 验证集: 500*10
  • 测试集: 1000*10

从原数据集生成子集的过程请参看helper下的两个脚本。其中,copy_data.sh用于从每个分类拷贝6500个文件,cnews_group.py用于将多个文件整合到一个文件中。执行该文件后,得到三个数据文件:

  • cnews.train.txt: 训练集(50000条)
  • cnews.val.txt: 验证集(5000条)
  • cnews.test.txt: 测试集(10000条)


预处理

data/cnews_loader.py为数据的预处理文件。

  • read_file(): 读取文件数据;
  • build_vocab(): 构建词汇表,使用字符级的表示,这一函数会将词汇表存储下来,避免每一次重复处理;
  • read_vocab(): 读取上一步存储的词汇表,转换为{词:id}表示;
  • read_category(): 将分类目录固定,转换为{类别: id}表示;
  • to_words(): 将一条由id表示的数据重新转换为文字;
  • preocess_file(): 将数据集从文字转换为固定长度的id序列表示;
  • batch_iter(): 为神经网络的训练准备经过shuffle的批次的数据。


经过数据预处理,数据的格式如下:

Data Shape Data Shape

x_train [50000, 600] y_train [50000, 10]

x_val [5000, 600] y_val [5000, 10]

x_test [10000, 600] y_test[10000, 10]


CNN卷积神经网络

配置项


CNN可配置的参数如下所示,在cnn_model.py中。

class TCNNConfig(object):

  """CNN配置参数"""


  embedding_dim = 64   # 词向量维度

  seq_length = 600    # 序列长度

  num_classes = 10    # 类别数

  num_filters = 128    # 卷积核数目

  kernel_size = 5     # 卷积核尺寸

  vocab_size = 5000    # 词汇表达小


  hidden_dim = 128    # 全连接层神经元


  dropout_keep_prob = 0.5 # dropout保留比例

  learning_rate = 1e-3  # 学习率


  batch_size = 64     # 每批训练大小

  num_epochs = 10     # 总迭代轮次


  print_per_batch = 100  # 每多少轮输出一次结果

  save_per_batch = 10   # 每多少轮存入tensorboard


CNN模型

具体参看cnn_model.py的实现。

大致结构如下:



训练与验证

运行 python run_cnn.py train,可以开始训练。


若之前进行过训练,请把tensorboard/textcnn删除,避免TensorBoard多次训练结果重叠。


在验证集上的最佳效果为94.12%,且只经过了3轮迭代就已经停止。

准确率和误差如图所示:



测试

运行 python run_cnn.py test 在测试集上进行测试。


Configuring CNN model...
Loading test data...
Testing...
Test Loss:   0.14, Test Acc:  96.04%
Precision, Recall and F1-Score...
             precision    recall  f1-score   support

         体育       0.99      0.99      0.99      1000
         财经       0.96      0.99      0.97      1000
         房产       1.00      1.00      1.00      1000
         家居       0.95      0.91      0.93      1000
         教育       0.95      0.89      0.92      1000
         科技       0.94      0.97      0.95      1000
         时尚       0.95      0.97      0.96      1000
         时政       0.94      0.94      0.94      1000
         游戏       0.97      0.96      0.97      1000
         娱乐       0.95      0.98      0.97      1000avg / total       0.96      0.96      0.96     10000Confusion Matrix...[[991   0   0   0   2   1   0   4   1   1]
 [  0 992   0   0   2   1   0   5   0   0]
 [  0   1 996   0   1   1   0   0   0   1]
 [  0  14   0 912   7  15   9  29   3  11]
 [  2   9   0  12 892  22  18  21  10  14]
 [  0   0   0  10   1 968   4   3  12   2]
 [  1   0   0   9   4   4 971   0   2   9]
 [  1  16   0   4  18  12   1 941   1   6]
 [  2   4   1   5   4   5  10   1 962   6]
 [  1   0   1   6   4   3   5   0   1 979]]

Time usage: 0:00:05


在测试集上的准确率达到了96.04%,且各类的precision, recall和f1-score都超过了0.9。

从混淆矩阵也可以看出分类效果非常优秀。

评论 ( {{ comments.total }} )
{{ o.content }}
赞 {{ o.likes_count ? o.likes_count : '' }} 回复 {{ o.created_at }}
作者信息
5 篇文章,406 次阅读
被赞 8 次
4 个粉丝, 1 个关注