详解最大似然估计、最大后验概率估计,以及贝叶斯公式

昵称=0
3个月前 阅读 41 点赞 1

最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们。


概率和统计是一个东西吗?


概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反。

概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等)。


 举个例子我想研究怎么养猪(模型是猪),我选好了想养的品种、喂养方式、猪棚的设计等等(选择参数),我想知道我养出来的猪大概能有多肥,肉质怎么样(预测结果)。


统计研究的问题则相反。统计是,有一堆数据,要利用这堆数据去预测模型和参数。


仍以猪为例现在我买到了一堆肉,通过观察和判断,我确定这是猪肉(这就确定了模型。在实际研究中,也是通过观察数据推测模型是/像高斯分布的、指数分布的、拉普拉斯分布的等等),然后,可以进一步研究,判定这猪的品种、这是圈养猪还是跑山猪还是网易猪,等等(推测模型参数)。


一句话总结:概率是已知模型和参数,推数据。统计是已知数据,推模型和参数。

显然,本文解释的MLE和MAP都是统计领域的问题。它们都是用来推测参数的方法。为什么会存在着两种不同方法呢? 这需要理解贝叶斯思想。我们来看看贝叶斯公式。


贝叶斯公式到底在说什么?



这个式子就很有意思了。


想想这个情况。一辆汽车(或者电瓶车)的警报响了,你通常是什么反应?有小偷?撞车了? 不。。 你通常什么反应都没有。因为汽车警报响一响实在是太正常了!每天都要发生好多次。本来,汽车警报设置的功能是,出现了异常情况,需要人关注。然而,由于虚警实在是太多,人们渐渐不相信警报的功能了。


贝叶斯公式就是在描述,你有多大把握能相信一件证据?(how much you can trust the evidence)

我们假设响警报的目的就是想说汽车被砸了。把A计作“汽车被砸了”,B计作“警报响了”,带进贝叶斯公式里看。我们想求等式左边发生A|B的概率,这是在说警报响了,汽车也确实被砸了。汽车被砸引起(trigger)警报响,即B|A。


但是,也有可能是汽车被小孩子皮球踢了一下、被行人碰了一下等其他原因(统统计作~A),其他原因引起汽车警报响了,即B|~A


那么,现在突然听见警报响了,这时汽车已经被砸了的概率是多少呢(这即是说,警报响这个证据有了,多大把握能相信它确实是在报警说汽车被砸了)?


想一想,应当这样来计算。用警报响起、汽车也被砸了这事件的数量,除以响警报事件的数量(这即【式1】)。


进一步展开,即警报响起、汽车也被砸了的事件的数量,除以警报响起、汽车被砸了的事件数量加上警报响起、汽车没被砸的事件数量(这即【式2】)。


可能有点绕,请稍稍想一想。


再思考【式2】。想让P(A|B)=1,即警报响了,汽车一定被砸了,该怎么做呢?让P(B|~A)P(~A)=0即可。很容易想清楚,假若让P(~A)=0,即杜绝了汽车被球踢、被行人碰到等等其他所有情况,那自然,警报响了,只剩下一种可能——汽车被砸了。这即是提高了响警报这个证据的说服力。


从这个角度总结贝叶斯公式:做判断的时候,要考虑所有的因素。 老板骂你,不一定是你把什么工作搞砸了,可能只是他今天出门前和太太吵了一架。


再思考【式2】。观察【式2】右边的分子,P(B|A)为汽车被砸后响警报的概率。姑且仍为这是1吧。但是,若P(A)很小,即汽车被砸的概率本身就很小,则P(B|A)P(A)仍然很小,即【式2】右边分子仍然很小,P(A|B)还是大不起来。 


这里,P(A)即是常说的先验概率,如果A的先验概率很小,就算P(B|A)较大,可能A的后验概率P(A|B)还是不会大(假设P(B|~A)P(~A)不变的情况下)


从这个角度思考贝叶斯公式:一个本来就难以发生的事情,就算出现某个证据和他强烈相关,也要谨慎。


证据很可能来自别的虽然不是很相关,但发生概率较高的事情。 发现刚才写的代码编译报错,可是我今天状态特别好,这语言我也很熟悉,犯错的概率很低。因此觉得是编译器出错了。 ————别,还是先再检查下自己的代码吧。


似然函数

似然(likelihood)这个词其实和概率(probability)是差不多的意思,Colins字典这么解释:The likelihood of something happening is how likely it is to happen. 你把likelihood换成probability,这解释也读得通。

但是在统计里面,似然函数和概率函数却是两个不同的概念(其实也很相近就是了)。


对于这个函数P(x|theta)

输入有两个:x表示某一个具体的数据;theta表示模型的参数。

如果theta是已知确定的,x是变量,这个函数叫做概率函数(probability function),它描述对于不同的样本点x,其出现概率是多少。

如果x是已知确定的,theta是变量,这个函数叫做似然函数(likelihood function), 它描述对于不同的模型参数,出现x这个样本点的概率是多少。


这有点像“一菜两吃”的意思。其实这样的形式我们以前也不是没遇到过。例如,f(x,y)=x^y,既x的y次方。如果x是已知确定的(例如x=2),这就是f(y)=2^y 这是指数函数。 如果y是已知确定的(例如y=2),这就是f(x)=x^2,这是二次函数。


同一个数学形式,从不同的变量角度观察,可以有不同的名字。

这么说应该清楚了吧? 如果还没讲清楚,别急,下文会有具体例子。

现在真要先讲讲MLE了。。


最大似然估计(MLE)

假设有一个造币厂生产某种硬币,现在我们拿到了一枚这种硬币,想试试这硬币是不是均匀的。即想知道抛这枚硬币,正反面出现的概率(记为theta)各是多少?


这是一个统计问题,回想一下,解决统计问题需要什么? 数据!

于是我们拿这枚硬币抛了10次,得到的数据(x0)是:反正正正正反正正正反。我们想求的正面概率θθ是模型参数,而抛硬币模型我们可以假设是 二项分布


可以看出,在theta=0.7时,似然函数取得最大值。


这样,我们已经完成了对θθ的最大似然估计。即,抛10次硬币,发现7次硬币正面向上,最大似然估计认为正面向上的概率是0.7。

| 1
评论 ( {{ comments.total }} )

还没有人发表评论...

{{ o.content }}
赞 {{ o.likes_count ? o.likes_count : '' }} 回复 {{ o.created_at }}